Neolignans and Caffeoyl Derivatives from Selaginella moellendorffii

by Yue-Hu Wang^a), Qian-Yun Sun^b), Fu-Mei Yang^b), Chun-Lin Long*^a)^c), Fu-Wei Zhao^a), Gui-Hua Tang^a), Hong-Mei Niu^a)^d), Huan Wang^a)^c), Qiao-Qin Huang^a)^c), Jin-Jin Xu^a)^c), and Li-Juan Ma^a)^c)

- a) Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China (phone/fax: +86-10-6893 0381; e-mail: long@mail.kib.ac.cn)
- b) Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, P. R. China
- ^c) College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, P. R. China
 ^d) Southwest Forestry University, Kunming 650224, P. R. China
 - e) Yunnan Agricultural University, Kunming 650201, P. R. China

Ten new phenolic compounds including the six neolignans 1-3 and 6-8 and four caffeoyl derivatives, *i.e.*, myo-inositol 1-caffeate (9), myo-inositol 6-caffeate (10), myo-inositol 5-caffeate (11), and paucine $3'-\beta$ -D-glucopyranoside (12) were isolated from the whole plants of *Selaginella moellendorffii* (caffeic acid = 3-(3,4-dihydroxyphenyl)prop-2-enoic acid). Their structures were established by spectroscopic and chemical methods.

Introduction. – Selaginella moellendorffii Hieron. (Selaginellaceae), a perennial herb, is mainly distributed in the southern area of the Changjiang River in China and has been used to treat jaundice, gonorrhea, bleeding, acute hepatitis, and idiopathic thrombocytopenic purpura (ITP) in traditional Chinese folk medicine. Earlier studies found a coumarin, fatty acids [1], a lignan glucoside [2], flavone glycosides [3], and cytotoxic [4] and antioxidative [5] biflavones in this plant. In our recent research, a series of pyrrolidinoindoline alkaloids were found from this plant [6]. In continuation of the studies on this plant, ten new phenolic derivatives, 1-3 and 6-12, and four known ones, compounds 4 and 5, paucine (=(2E)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide 13) [7], and N^1 -cis-p-coumaroylagmatine (=(2Z)-N-{4-[(aminoiminomethyl)amino]butyl}-3-(4-hydroxyphenyl)prop-2-enamide 14) [8], were isolated from the whole plants of S. moellendorffii. The structure elucidation of these new compounds is reported.

Results and Discussion. – Compound $\mathbf{1}^1$) was obtained as an amorphous solid with an m/z of 441.1518 ($[M+Na]^+$) by HR-ESI-MS, leading us to assign it a molecular formula $C_{22}H_{26}O_8$. The IR spectrum of $\mathbf{1}$ showed absorptions for hydroxy (3441 cm⁻¹), carbonyl (1731 cm⁻¹), and aromatic groups (1616, 1519, and 1500 cm⁻¹). In the 13 C-NMR spectrum of $\mathbf{1}$ (*Table 1*), 22 signals for 4 MeO groups (δ (C) 56.1 (2q), 55.8 (q), and 51.5 (q)), 12 aromatic (δ (C) 147.1 (2s), 146.4 (s), 143.9 (s), 134.5 (s), 133.7 (s),

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

132.2 (s), 128.2 (s), 116.1 (d), 112.1 (d), and 103.0 (2d)), 1 ester carbonyl (δ (C) 173.7 (s)), and 5 alphatic C-atoms (δ (C) 88.0 (d), 63.5 (t), 53.7 (d), 36.0 (t), and 30.6 (t)) suggested that this compound might be a lignan. Careful comparison of the NMR data of **1** (*Table 1*) with those of known neolignans revealed that compound **1** is a dihydrobenzofuran neolignan with oxidation of C(9') and methoxy substituentes at C(3), C(3'), C(5), and C(9') [9][10], which was confirmed by the HMBCs of MeO-C(3.5)/C(3.5), MeO-C(3')/C(3'), and MeO-C(9')/C(9') (Fig.). The relative

MeOOC 8 OMe OMe OMe Figure. Key HMBCs (
$$H \rightarrow C$$
) of 1

 a) In CDCl₃ at 500 MHz. b) In CDCl₃ at 125 MHz. c) In CD₃OD at 500 MHz. d) In CD₃OD at 100 MHz.

Table 1. ¹H- and ¹³C-NMR Data of 1-4. δ in ppm, J in Hz. Asterisks (*) mark overlapping signals.

	1		2		3		4	
	$\delta({ m H})^{a})$	$\delta(C)^b$	$\delta(C)^b$ $\delta(H)^c$	$\delta(C)^d$	$\delta(C)^d$ $\delta(H)^c$	$\delta(C)^d$	$\delta(C)^d$ $\delta(H)^a$	$\delta(C)^b)$
C(1)		132.2		133.3		133.6		132.2
H - C(2,6)	6.65 (s, 2 H)	103.0	6.67 (s)	104.1	7.18(d, J = 8.5)	128.3	6.65 (s)	103.1
H-C(3.5)		147.1		149.4	6.76(d, J=8.5)	116.4	``	147.1
C(4)		134.5				158.6		134.6
C(7)	5.52 (d, J = 6.5)		5.58 (d, J = 6.5)		5.57 (d, J = 6.1)	9.68	5.49 (d, J = 6.3)	88.1
	3.55 (dd, J = 12.5, 6.5)	53.7	3.53 (dd, J = 11.5, 6.5)	55.0	3.51 (dd, J = 12.2, 6.1)	54.1	3.46 (dd, J = 11.7, 6.3)	53.8
$CH_2(9)$	3.87*		3.80-3.88 (m)		3.79-3.84 (m)	64.7	3.81-3.87, 3.73-3.78 (2m)	63.7
		$\overline{}$				124.4		135.5
H-C(2')	6.65 (s)	112.1	7.15 (s)	113.6	7.91 $(dd, J=8.5, 1.5)$	133.0	6.72 (s)	112.4
C(3') or $H-C(3')$		143.9		145.8	6.84 (d, J = 8.5)	109.9		144.2
C(4')		146.4		151.8		165.4		146.5
C(5')		128.2		130.8		129.7		127.7
H-C(6')	6.68 (s)	116.1	7.18 (s)	119.0	7.94 (br. s)	128.1	6.71 (s)	115.9
$CH_2(7'), H-C(7'), 2.88(t)$	2.88(t, J=7.5)	30.6	7.62 (d, J=16.0)	146.8		170.0	2.61 $(t, J=7.7)$	32.0
$CH_2(8)$ or	2.63(t, J=7.5)	36.0	6.33 (d, J = 16.0)	116.4			1.77 - 1.84 (m)	34.6
H-C(8')								
$C(9')$ or $CH_2(9')$		173.7		170.9			3.56(t, J = 6.5)	62.2
MeO-C(3.5)	3.86 (s)	56.1	3.81 (s)	56.7			3.80 (s)	56.3
MeO-C(3')	3.89 (s)	55.8	3.90 (s)	56.7			3.85 (s)	56.0
MeO-C(9')	3.67 (s)	51.5						

configuration of H-C(7) and H-C(8) was assigned as *trans* by the ROESY correlations of $H-C(7)/CH_2(9)$; J values are useless to distinguish *cis/trans* diastereoisomers of the dihydrobenzofuran neolignans [9]. On the other hand, a significant difference in chemical shifts of C(8) in 9-hydroxydihydrobenzofuran neolignans, appearing at δ *ca.* 54 in the *trans* isomers and at δ *ca.* 49 in the *cis* ones [9][11], is a reliable criterion to distinguish both diastereoisomers. The chemical shift of C(8) (δ 53.7) in 1 also suggested the relative *trans*-configuration of H-C(7) and H-C(8).

The absolute configurations of dihydrobenzofuran neolignans are usually determined by the signs of the band $^{1}L_{b}$ (270–300 nm) or $^{1}L_{a}$ (220–240 nm) in the circulardichroism (CD) spectrum. The positive signs of the $^{1}L_{b}$ band predict the absolute configuration of 7,8-trans-3-methoxydihydrobenzofuran neolignans to be (7*S*,8*R*) [12] [13]. The CD spectrum of 1 showed a positive Cotton effect at 282 nm ($\Delta\varepsilon$ + 0.13), indicating that the absolute configuration of 1 was the (7*S*,8*R*)-configuration. Therefore, compound 1 was elucidated as (7*S*,8*R*)-4,9-dihydroxy-3,3′,5-trimethoxy-4′,7-epoxy-8,5′-neolignan-9′-oic acid methyl ester¹).

Compound 31) was assigned the molecular formula C₁₆H₁₄O₅ by HR-ESI-MS analysis $(m/z 285.0754 ([M-H]^-, C_{16}H_{13}O_5^-))$. The IR spectrum showed absorption bands at 3397, 1674, 1611, 1600, and 1518 cm⁻¹ due to hydroxy, carbonyl, and phenyl groups. The ¹H-NMR spectrum (Table 1) of 3 indicated the presence of a pdisubstituted (δ (H) 7.18 (d, J = 8.5 Hz, 2 H) and 6.76 (d, J = 8.5 Hz, 2 H)) and a 1,2,4trisubstituted (δ (H) 7.94 (br. s), 7.91 (dd, J = 8.5, 1.5 Hz), and 6.84 (d, J = 8.5 Hz)) benzene ring in 3. Its ¹³C-NMR spectrum (Table 1) showed 16 signals, including the characteristic ones for dihydrobenzofuran neolignans ($\delta(C)$ 89.6 (d), 64.7 (t), and 54.1 (d)), 12 ones for two benzene rings (δ (C) 165.4, 158.6, 133.6, 133.0, 129.7, 128.3 (2 C), 128.1, 124.4, 116.4 (2 C), and 109.9), and one for a carboxy group (δ (C) 170.0), which implied that this compound might be a 8',9'-dinor-dihydrobenzofuran neolignan. This was confirmed by the HMBC spectrum of 3. The relative configuration of 3 was also determined as trans by the chemical shift of C(8) (δ (C) 54.1), and the absolute configuration of 3 was assigned as (75.8R) by comparing its CD data with those of the known (+)-conocarpan [14–16]. Therefore, compound 3 was determined as (75,8R)-4,9-dihydroxy-4',7-epoxy-8',9'-dinor-8,5'-neolignan-7'-oic acid¹).

Compound 4^1) showed the $[M + C1]^-$ ion peak at m/z 425.1370 in the negative-ion-mode HR-ESI-MS, indicating the molecular formula $C_{21}H_{26}O_7$. The NMR spectra of 4 (*Table 1*) were very similar to those of (+)-(7R,8S)-5-methoxydihydrodehydroconi-

feryl alcohol [10]. However, the optical rotation value of **4** was negative rather than positive, implying the absolute configuration of **4** to be (7S,8R), which is consistent with those of **1** and **3**. Consequently, **4** is (7S,8R)-3,3',5-trimethoxy-4',7-epoxy-8,5'-neolignan-4,9,9'-triol¹). An analog without optical activity was also reported in two other references [17][18].

The molecular formula of 5^1) was determined as $C_{27}H_{36}O_{12}$ by the $[M+Cl]^-$ ion peak at m/z 587.1883 in the HR-ESI-MS. The NMR data of 5 (*Table 2*) were very similar to those of a known neolignan glucoside [19]. The relative configuration of H-C(7) and H-C(8) in the known compound was suggested to be *cis* according to the J value between the two protons by the authors. It should be revised as *trans* based on the chemical shift of C(8) ($\delta(C)$ 55.8) [9][11]. Because the optical value of this compound has not been reported, it was difficult to determine if compound 5 is identical to this known one. Acidic hydrolysis of 5 provided a D-glucose. Thus, 5 was deduced as rel-(7R,8S)-3,3',5-trimethoxy-4',7-epoxy-8,5'-neolignan-4,9,9'-triol $4-\beta$ -D-glucopyranoside¹).

Compound 6^1) had the molecular formula $C_{27}H_{36}O_{12}$ as deduced from an HR negative-ion-mode ESI-MS. Its NMR data (*Table 2*) showed signals for a neolignan moiety identical to that of **4** and a β -glucose moiety (δ (H) 4.36 (d, J=7.9 Hz, H-C(1"))). The glucosyloxy group was located at C(9) by the long-range correlations between H-C(9) (δ (H) 4.10 (t, J=8.5 Hz)) and C(1") (δ (C) 104.1), and H-C(1") to C(9) (δ (C) 72.3) in the HMBC spectrum of **6**. Therefore, **6** is rel-(7R,8S)-3,3',5-trimethoxy-4',7-epoxy-8,5'-neolignan-4,9,9'-triol 9- β -D-glucopyranoside¹).

Compound **7**¹) was found to have the formula $C_{27}H_{34}O_{12}$, two H-atoms less than that of **6**, from the HR-ESI-MS (neg.). Comparison of the NMR spectra (*Table 2*) and the formula of **7** with those of **6** indicated that **7** is a 7,8-didehydro derivative of **6**, namely 3,3',5-trimethoxy-4',7-epoxy-8,5'-neolign-7-ene-4,9,9'-triol 9- β -D-glucopyranoside¹), which was further confirmed by the HMBC spectrum of **7**.

Compound 8^1) was shown to have a molecular formula of $C_{28}H_{40}O_{13}$ by HR-ESI-MS (neg.). Signals for two 1,2,3,5-tetrasubstituted benzene moieties (δ (H) 6.60 (s, H–C(2,6)) and 6.50 (s, H–C(2',6'))) and an anomeric proton (δ (H) 4.80 (d, J = 7.9 Hz)) of a β -glucosyl group were observed in the 1 H-NMR spectrum of 8 ($Table\ 2$). In the 13 C-NMR spectrum of 8 ($Table\ 2$), 28 signals for 4 MeO (δ (C) 57.5 (2q) and 57.0 (2q)), two aromatic (δ (C) 154.5 (2s), 153.8 (2s), 139.8 (s), 136.9 (s), 134.8 (s), 134.6 (s), 108.4 (2d), and 106.7 (2d)), and a glucosyl group (δ (C) 105.6 (d), 78.3 (d), 77.8 (d), 75.7 (d), 71.2 (d), and 63.6 (t)), and 6 other alphatic C-atoms (δ (C) 84.9 (d), 63.6 (t), 62.1 (t), 39.0 (t), 35.4 (t), and 33.4 (t)) implied that this compound might be a lignan glucoside, which was further determined as a 8,4'-oxyneolignan 4-glucoside by the HMBC cross-peaks H–C(8)/C(4') and H–C(1'')/C(4). Accordingly, compound 8 was elucidated as 3,3',5,5'-tetramethoxy-8,4'-oxyneolignane-4,9,9'-triol 4- β -D-glucopyranoside 1).

Compound **9** was obtained as a colorless amorphous solid. The negative-ion-mode HR-ESI-MS exhibited an accurate ion peak at m/z 341.0878 ($[M-H]^-$), in accordance with the molecular formula $C_{15}H_{18}O_9$. The IR spectrum showed absorption bands due to hydroxy (3407 cm⁻¹), conjugated carbonyl (1688 and 1631 cm⁻¹), and phenyl (1604, 1523, and 1445 cm⁻¹) groups. A caffeoyl ($\delta(H)$ 7.02 (s), 6.98 (d, J = 8.0 Hz), 6.75 (d, J = 8.0 Hz), 7.49 (d, J = 16.0 Hz), and 6.24 (d, J = 16.0 Hz); $\delta(C)$ 166.5 (s, C(9'))) and a

Table 2. ¹H- and ¹³C- NMR Data (500 and 100 MHz, resp.; CD₃OD) of 5-8. δ in ppm, J in Hz. Asterisks (*) mark overlapping signals.

C(1) h </th <th></th> <th>S.</th> <th></th> <th>9</th> <th></th> <th>7</th> <th></th> <th>∞</th> <th></th>		S.		9		7		∞	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		δ(H)	δ(C)	δ(H)	δ(C)	δ(H)	δ(C)	δ(H)	δ(C)
6.73 (s) 1044 6.71 (s) 1042 7.23 (s) 105.9 154.4 154.4 6.71 (s) 104.2 7.23 (s) 105.9 135.6 155.8 5.59 (d , $J = 6.1$) 89.4 157.0 $3.41-3.48$ (m) 55.8 $3.62-3.66$ (m) 53.0 5.08 (d , $J = 11.0$), $4.90*$ 61.8 $3.83-3.89$, $3.72-3.77$ ($2m$) 65.0 4.10 (t , $J = 8.5$), $7.2.3$ 5.08 (d , $J = 11.0$), $4.90*$ 61.8 6.73 (s) 114.1 6.72 (m) 137.0 114.1 6.72 (m) 117.0 6.73 (s) 114.1 6.72 (m) 114.1 6.72 (m) 113.0 6.73 (s) 114.1 6.72 (m) 114.2 114.2 6.73 (s) 114.2 6.72 (m) 114.2 114.2 6.73 (s) 117.9 6.78 (s) 114.2 114.2 6.73 (s) 117.9 6.78 (s) 118.1 7.18 (m) 114.2 1.71 - 1.83 (m) 3.52 (m)	C(1)	ı	140.3		133.9		122.2		136.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H - C(2,6)		104.4	6.71 (s)	104.2	7.23 (s)	105.9	6.60 (s)	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3,5)		154.4		149.2		149.5		153.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)		135.6		136.1		137.8		134.6
$3.83 - 3.89, 3.72 - 3.77 (2m) \qquad 55.8 \qquad 3.62 - 3.66 (m) \qquad 53.0 \qquad 111.7$ $3.83 - 3.89, 3.72 - 3.77 (2m) \qquad 65.0 \qquad 4.10 (t, J = 8.5), \qquad 72.3 \qquad 5.08 (d, J = 11.0), 4.90* \qquad 61.8$ $3.85 - 3.91 (m) \qquad 137.0 \qquad 137.0 \qquad 139.4$ $6.73 (s) \qquad 114.1 \qquad 6.72 (s) \qquad 114.1 \qquad 6.75 (s) \qquad 108.6$ $145.2 \qquad 147.4 \qquad 147.4 \qquad 147.4 \qquad 147.4 \qquad 147.4 \qquad 147.4$ $1.77 - 1.83 (m) \qquad 117.9 \qquad 6.78 (s) \qquad 118.1 \qquad 7.18 (s) \qquad 112.1$ $2.61 (t, J = 7.5) \qquad 32.9 \qquad 2.62 (t, J = 7.8) \qquad 32.9 \qquad 2.77 (t, J = 7.3) \qquad 33.4$ $1.77 - 1.83 (m) \qquad 56.2 \qquad 3.52 - 3.57 (m) \qquad 6.22 \qquad 3.60 (t, J = 6.5) \qquad 6.22$ $4.85 (t, J = 6.5) \qquad 6.22 \qquad 3.52 - 3.57 (m) \qquad 6.22 \qquad 3.60 (t, J = 6.5) \qquad 6.22$ $3.43 - 3.42 (m) \qquad 77.8 \qquad 3.36 (t, J = 7.9) \qquad 77.2 \qquad 3.23 (t, J = 7.9) \qquad 77.2 \qquad 3.23 (t, J = 7.9) \qquad 77.2 \qquad 3.23 (t, J = 7.9) \qquad 77.2 \qquad 3.24 - 3.80 (t, J = 7.9) \qquad 78.2 \qquad 3.26 * \qquad 71.7 \qquad 3.25 - 3.30 (m) \qquad 78.2 \qquad 3.26 * \qquad 71.7 \qquad 3.25 - 3.30 (m) \qquad 78.2 \qquad 3.26 * \qquad 71.7 \qquad 3.25 - 3.30 (m) \qquad 78.2 \qquad 3.26 * \qquad 71.7 \qquad 3.25 - 3.30 (m) \qquad 78.2 \qquad 3.24 (t, J = 11.6, 5.5) \qquad 3.24 - 3.30 (t, J = 11.6, 5.5) \qquad 3.25 - 3.30 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 \qquad 5.24 (t, J = 11.6, 5.5) \qquad 5.24 (t, J = 11.6, 5.6) \qquad 5.24 ($	H-C(7), C(7),	5.55	88.5	5.59 (d, J = 6.1)	89.4		157.0	2.98(d, J = 6.1)	39.0
3.41-3.48 (m) 55.8 $3.62-3.66 (m)$ 53.0 $3.85-3.97 (2m)$ 65.0 $4.10 (t, J=8.5)$, 72.3 $5.08 (d, J=11.0), 4.90*$ 61.8 $3.85-3.91 (m)$ 137.2 137	or $CH_2(7)$								
$3.83 - 3.89, 3.72 - 3.77 (2m) \qquad 65.0 4.10 (t, J = 8.5), \qquad 72.3 5.08 (d, J = 11.0), 4.90* 61.8$ $3.85 - 3.91 (m) \qquad 137.0 \qquad 137.0 \qquad 139.4$ $6.73 (s) \qquad 114.1 6.72 (s) \qquad 114.1 6.75 (s) \qquad 108.6$ $145.2 \qquad 144.2 \qquad 145.2 \qquad 144.3 \qquad 146.1$ $147.4 \qquad 142.5 \qquad 147.4 \qquad 145.2 \qquad 147.4$ $1.77 - 1.83 (m) \qquad 3.84 \qquad 1.77 - 1.84 (m) \qquad 35.8 \qquad 1.87 - 1.93 (m) \qquad 36.0$ $3.55 (t, J = 6.5) \qquad 6.2.2 \qquad 3.52 - 3.57 (m) \qquad 6.2.2 \qquad 3.60 (t, J = 6.5) \qquad 6.2.2$ $4.36 (d, J = 7.3) \qquad 105.2 4.36 (d, J = 7.9) \qquad 104.1 4.48 (d, J = 7.9) \qquad 102.9$ $3.38 - 3.42 (m) \qquad 77.8 3.36 (t, J = 7.9) \qquad 75.2 3.30* \qquad 76.2$ $3.38 - 3.42 (m) \qquad 77.8 3.36 (t, J = 7.9) \qquad 75.2 3.30* \qquad 78.3$ $3.38 - 3.42 (m) \qquad 77.8 3.36 (t, J = 7.9) \qquad 76.2 3.25 - 3.31 (m) \qquad 78.3 3.25 - 3.30 (m) \qquad 78.0 3.26* \qquad 3.91 (s) \qquad 55.4$ $3.80 (s) \qquad 5.6.8 3.86 (s) \qquad 56.7 3.99 (s) \qquad 56.4$	H-C(8) or $C(8)$	3.41	55.8	3.62-3.66 (m)	53.0		111.7	4.20-4.25 (m)	84.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2(9)$	3.83	65.0	4.10(t, J=8.5),	72.3	5.08 (d, J = 11.0), 4.90*	61.8	3.55-3.59,	63.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3.85-3.91 (m)				3.48 - 3.55 (2m)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1')		137.2		137.0		139.4		139.8
145.2 145.2 145.2 145.2 145.4 147.4 147.4 147.4 147.4 147.4 147.4 147.4 147.4 147.4 142.5 129.4 129.4 129.5 117.9 $6.78 (s)$ 118.1 $7.18 (s)$ 112.1 $2.61 (t, J = 7.5)$ 32.9 $2.62 (t, J = 7.8)$ 32.9 $2.77 (t, J = 7.3)$ 33.4 $1.77 - 1.83 (m)$ 35.8 $1.77 - 1.84 (m)$ 35.8 $187 - 1.93 (m)$ 36.0 $3.55 (t, J = 6.5)$ 62.2 $3.52 - 3.57 (m)$ 62.2 $3.60 (t, J = 7.3)$ 36.0 $4.85 (d, J = 7.3)$ 105.2 $4.36 (d, J = 7.9)$ 104.1 $4.48 (d, J = 7.9)$ 102.9 $4.34 - 3.48 (m)$ 77.8 $3.36 (t, J = 7.9)$ 75.2 $3.30 (t, J = 7.9)$ 78.3 $3.38 - 3.42 (m)$ 71.2 $3.25 - 3.31 (m)$ 71.6 $3.29 *$ 71.7 $3.17 - 3.21 (m)$ 78.3 $3.25 - 3.31 (m)$ 78.0 $3.26 *$ 78.3 $3.44 - 3.79 (m)$ $3.66 (m)$ $3.66 (m)$ $3.70 (dd, J = 11.6, 5.5)$ $3.80 (s)$ </td <td>H-C(2')</td> <td>6.73</td> <td>114.1</td> <td>6.72(s)</td> <td>114.1</td> <td>6.75 (s)</td> <td>108.6</td> <td>6.50(s)</td> <td>106.7</td>	H-C(2')	6.73	114.1	6.72(s)	114.1	6.75 (s)	108.6	6.50(s)	106.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3')		145.2		145.2		146.1		154.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4')		147.4		147.4		142.5		134.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5')		129.4		129.5		133.3		154.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(6')	6.70	117.9	6.78 (s)	118.1	7.18 (s)	112.1	6.50(s)	106.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathrm{CH}_2(7')$	2.61	32.9	2.62(t, J = 7.8)	32.9	2.77(t, J=7.3)	33.4	2.62(t, J=7.9)	33.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\mathrm{CH}_2(8')$	1.77	35.8	$1.77 - 1.84 \ (m)$	35.8	$1.87 - 1.93 \ (m)$	36.0	1.78-1.85 (m)	35.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$CH_2(9')$	3.55		3.52-3.57 (m)	62.2	3.60 (t, J = 6.5)	62.2	3.51-3.59 (m)	62.1
$3.43-3.48 \ (m)$ $75.6 \ 3.22 \ (t, J=7.9)$ $75.2 \ 3.23 \ (t, J=7.9)$ $75.2 \ 3.33 \ (t, J=7.9)$ $75.2 \ 3.34 \ 3.38 - 3.42 \ (m)$ $71.8 \ 3.36 \ (t, J=7.9)$ $78.2 \ 3.30 \ 71.7$ $71.7 \ 3.25-3.31 \ (m)$ $71.6 \ 3.29 \ 71.7$ $71.7 \ 3.77-3.21 \ (m)$ $78.3 \ 3.25-3.30 \ (m)$ $78.0 \ 3.26 \ 3.84-3.88$, $62.7 \ 3.91 \ (d, J=11.6)$, $62.8 \ 3.84-3.88$, $62.7 \ 3.91 \ (d, J=11.6)$, $62.8 \ 3.80 \ (s)$ $56.8 \ 3.86 \ (s)$ $56.8 \ 3.86 \ (s)$ $56.7 \ 3.99 \ (s)$ $56.7 \ 3.99 \ (s)$	H-C(1'')	8.4		4.36 (d, J = 7.9)	104.1	4.48 (d, J = 7.9)	102.9	4.80(d, J=7.9)	105.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H-C(2'')	3.4		3.22(t, J=7.9)	75.2	3.23 (t, J = 7.9)	75.2	3.43 - 3.49 (m)	75.7
3.38-3.42 (m) 71.2 3.25-3.31 (m) 71.6 3.29* 71.7 3.17-3.21 (m) 78.3 3.25-3.30 (m) 78.0 3.26* 78.2 3.74-3.79 (m), 62.5 3.84-3.88, 62.7 3.91 (d, J=11.6), 62.8 3.62-3.68 (dd, J=11.6, 5.0) 3.62-3.70 (2m) 3.70 (dd, J=11.6, 5.5) 57.1 3.80 (s) 56.8 3.84 (s) 56.7 3.99 (s) 56.4	H-C(3'')	3.3		3.36(t, J=7.9)	78.2	3.30*	78.3	3.38-3.43 (m)	77.8
3.17-3.21 (m) 78.3 3.25-3.30 (m) 78.0 3.56* 3.74-3.79 (m), 62.5 3.84-3.88, 62.7 3.91 (d, J=11.6), 62.8 3.62-3.68 (dd, J=11.6, 5.0) 3.62-3.70 (2m) 3.70 (dd, J=11.6, 5.5) 57.1 3.80 (s) 56.8 3.94 (s) 56.1 56.4 3.86 (s) 56.8 3.99 (s) 56.4	H-C(4'')	3.3		3.25-3.31 (m)	71.6	3.29*	71.7	3.38-3.43 (m)	71.2
3.74-3.79 (m), 62.5 3.84-3.88, 62.7 3.91 (d, J=11.6), 62.8 3.62-3.68 (dd, J=11.6, 5.0) 3.62-3.70 (2m) 3.70 (dd, J=11.6, 5.5) 57.1 3.80 (s) 57.0 3.81 (s) 56.8 3.94 (s) 57.1 3.86 (s) 56.8 3.86 (s) 56.7 3.99 (s) 56.4	H-C(5'')	3.1		3.25-3.30 (m)	78.0	3.26*	78.2	3.16-3.22 (m)	78.3
3.62-3.68 (dd, J=11.6, 5.0) 3.62-3.70 (2m) 3.70 (dd, J=11.6, 5.5) 3.80 (s) 57.0 3.81 (s) 56.8 3.94 (s) 56.7 3.99 (s) 56.8 56.4 3.86 (s) 56.8 3.86 (s) 56.7 3.99 (s) 56.4	$CH_2(6'')$	3.74		3.84 - 3.88,	62.7	3.91 (d, J = 11.6),	62.8	3.75*,	63.6
3.80 (s) 57.0 3.81 (s) 56.8 3.94 (s) 57.1 3.86 (s) 56.8 3.86 (s) 56.7 3.99 (s) 56.4		3.62		3.62-3.70 (2m)		3.70 (dd, J = 11.6, 5.5)		3.66 (dd, J = 11.6, 4.9)	
3.86 (s) 56.8 3.86 (s) 56.7 3.99 (s) 56.4	MeO-C(3,5)		57.0	3.81 (s)	56.8	3.94 (s)	57.1	3.81 (s)	57.0
	MeO-C(3')	3.86 (s)	56.8	3.86 (s)	26.7	3.99 (s)	56.4	3.76(s)	57.5
	MeO-C(5')							3.76(s)	57.5

myo-inositol group (δ (H) 4.50 (br. d, J = 9.6 Hz, H-C(1)), 3.84 (br. s, H-C(2)), 3.21 (br. d, J = 9.6 Hz, H-C(3)), 3.40 (t, J = 9.6 Hz, H-C(4)), 3.00 (t, J = 9.6 Hz, H-C(5)), and 3.64 (t, J = 9.6 Hz, H-C(6)) were easily deduced from its NMR spectra (*Table 3*). The two moieties were linked through the bonds C(1)-O-C(9') by the long-range correlation H-C(1)/C(9') in the HMBC spectrum of 9. Therefore, compound 9 was elucidated as myo-inositol 1-caffeate. Its absolute configuration was not determined.

	9		10		11 ^a)	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
H-C(1)	4.50 (br. $d, J = 9.6$)	74.6	3.40 (dd, J = 9.6, 2.4)	69.8	3.20-3.27 (m)	71.8
H-C(2)	3.84 (br. s)	70.1	3.74 (t, J = 2.4)	73.0	3.69-3.75 (m)	72.6
H-C(3)	3.21 (br. $d, J = 9.6$)	71.4	3.19 (dd, J = 9.6, 2.4)	71.6	3.20-3.27 (m)	71.8
H-C(4)	3.40 (t, J = 9.6)	72.4	3.43 (t, J = 9.6)	72.8	3.55 (ddd, J = 10.0, 10.0, 5.5)	70.7
H-C(5)	3.00 (t, J = 9.6)	75.2	3.13 (t, J = 9.6)	75.3	4.64 (t, J = 10.0)	76.7
H-C(6)	3.64 (t, J = 9.6)	70.1	5.03 (t, J = 9.6)	75.3	3.55 (ddd, J = 10.0, 10.0, 5.5)	70.7
C(1')		125.5		125.8		125.8
H-C(2')	7.02(s)	114.6	7.03 (d, J = 1.7)	115.3	7.03(s)	114.7
C(3')		145.7		145.6		145.6
C(4')		148.6		148.2		148.2
H-C(5')	6.75 (d, J = 8.0)	115.8	6.74 (d, J = 8.2)	115.8	6.73 (d, J = 8.0)	115.8
H-C(6')	6.98 (d, J = 8.0)	121.3	6.97 (dd, J = 8.2, 1.7)	121.2	6.97 (d, J = 8.0)	121.2
H-C(7')	7.49 (d, J = 16.0)	144.9	7.49 (d, J = 15.8)	144.3	7.40 (d, J = 16.0)	144.3
H - C(8')	6.24 (d, J = 16.0)	114.5	6.23 (d, J = 15.8)	114.6	6.24 (d, J = 16.0)	115.3
C(9')		166.5		166.4		166.2

a) ¹H-NMR Signals of the OH groups: 9.56 (s, OH-C(4')); 9.18 (s, OH-C(3')); 4.76 (d, J = 5.5, OH-C(4), OH-C(6)); 4.66 (overlapped, OH-C(2)); 4.60 (d, J = 5.5, OH-C(1), OH-C(3)).

Compounds **10** and **11** had the same molecular formula $C_{15}H_{18}O_9$ as compound **9**, as determined by HR-ESI-MS (neg.). Based on the MS and NMR spectra (*Table 3*), **10** and **11** also comprised a caffeoyl and a *myo*-inositol moiety. The differences concerned the linkage positions of the two fragments. The caffeoyl group was located at O-C(6) in **10** and at O-C(5) in **11** as shown by the HMBC spectra. Thus, compounds **10** and **11** were deduced as *myo*-inositol 6-caffeate and *myo*-inositol 5-caffeate, respectively.

Generally, hydroxy cinnamic acids including caffeic acid are esters bound to various alcohols, most frequently sugars [20]. However, only a few inositol hydroxycinnamates were reported. As far as known, *myo*-inositol *trans*- and *cis-p*-coumarates were isolated from two *Taxus* plants [21][22] and several *myo*-insitol ferulate derivatives were synthesized [23]. Compounds **10** and **11** represent the first examples of inositol caffeate derivatives.

Compound **12** was obtained as a colorless amorphous solid having the molecular formula $C_{19}H_{28}N_2O_8$ as determined by HR-ESI-MS ($[M+H]^+$ at m/z 413.1933). The IR spectrum of **12** showed absorptions for hydroxy (3439 cm⁻¹), carbonyl (1639 cm⁻¹), and aromatic (1630, 1547, and 1511 cm⁻¹) groups. The NMR spectra of **12** indicated the

presence of a β -glucopyranose, a caffeoyl, and a putrescine (= butane-1,4-diamine). Comparison of the NMR data of **12** with those of paucine (**13**) revealed that compound **12** is a glucoside of paucine [7]. The glucose was located at C(3') according to the HMBC cross-peak H-C(1")/C(3'). Therefore, compound **12** was elucidated as paucine 3'- β -D-glucopyranoside.

Compounds **7** and **11**, and N^1 -cis-p-coumaroylagmatine (**14**) were tested for biological activity against the leukemia K562 cell line, and compound **12** and paucine against acetylcholinesterase (AChE). However, none of these compounds showed inhibitory effects up to the 200 μ g/ml dose used.

This work was financially supported by grants from the *National Natural Science Foundation of China* (No. 20972166), the *National Basic Research Program of China* (973 Program) (No. 2009CB526512), the *Ministry of Education of China* through its *111 & 985 Projects* (B08044 & MUC 98503-03-001006), and the *Knowledge Innovation Project of the Chinese Academy of Sciences*.

Experimental Part

General. Optical rotations: Jasco-DIP-370 automatic digital polarimeter. UV Spectra: Shimadzu-210A double-beam spectrometer; λ_{\max} (log ε) in nm. CD Spectra: Jasco-J-715 spectropolarimeter; λ (Δε) in nm. IR Spectra: Bio-Rad-FTS-135 spectrophotometer; KBr pellets; in cm⁻¹. NMR Spectra: Bruker-AM-400 and -DRX-500 spectrometers; δ in ppm rel. to Me₄Si, J in Hz. FAB-MS: VG-Autospec-3000 magnetic-sector instrument; glycerol as matrix in the negative-ion mode and 3-nitrobenzyl alcohol in the positive-ion mode; in m/z. ESI-MS and HR-ESI-MS: API-Qstar-Pulsar-1 instrument; in m/z. Anal. TLC: precoated silica-gel-F₂₅₄ plates (Qingdao Meigao Chemical Co., Qingdao, P. R. China); detection by spraying with 5% H₂SO₄ in EtOH, followed by heating. Prep. TLC: silica gel F₂₅₄ (Qingdao Meigao Chemical Co.). Column chromatography (CC): silica gel (200–300 mesh; Qingdao Meigao Chemical Co.), C-18 silica gel (40–75 μm; Fuji Silysia Chemical Ltd.), D₁₀₁ resin (Qingdao Meigao Chemical Co.), Sephadex LH-20 (40–70 μm; Amersham Pharmacia Biotech AB, Uppsala, Sweden). HPLC: Agilent-1200 chromatograph; semi-prep. column Zorbax SB-C₁₈ (9.4 × 250 mm, 5 μm).

Plant Material. Selaginella moellendorffii was collected from the Jingxi County of the Guangxi Zhuang Autonomous Region, P. R. China, in June 2008. The plant was identified by Dr. Guang-Wan Hu (Kunming Institute of Botany, Chinese Academy of Sciences), and a voucher specimen (No. JX0801) was deposited with the Laboratory of Ethnobotany, Kunming Institute of Botany.

Extraction and Isolation. The air-dried whole plants of S. moellendorffii (6 kg) were exhaustively extracted with MeOH (61; 4, 3, and 3 h, resp.) at 70°. The solvent was evaporated, and the remaining residue (780 g) was partitioned by CC (silica gel) into three fractions, with CHCl₃ (A, 32 g), Me₂CO (B, 154 g), and MeOH (C, 350 g). Fraction C was separated by CC (D₁₀₁ resin) into Fr. C₁ with H₂O (270 g) and Fr. C₂ with MeOH (71 g). Fr. C₂ was fractionated by CC (C18, MeOH/H₂O 5:95 \rightarrow 95:5): Fr. C₂₁ with 5% MeOH (18 g), Fr. C₂₂ with 10% MeOH (18 g), Fr. C₂₃ with 20% MeOH (11 g), Fr. C₂₄ with 30% MeOH (14 g), and Fr. C25 with 50% MeOH (13 g). Fr. C21 was subjected to CC (silica gel, CHCl3/MeOH/ HCOOH 90:30:1) and semi-prep. HPLC (MeOH/H₂O (containing 0.05% CF₃COOH) 10:90): 11 $(29.0 \text{ mg}; t_R 10.3 \text{ min})$, **10** $(16.0 \text{ mg}; t_R 12.4 \text{ min})$, and **9** $(12.0 \text{ mg}; t_R 18.3 \text{ min})$. Fr. C_{22} was subjected to CC (silica gel, CHCl₃/MeOH/HCOOH 50:10:1, and CHCl₃/MeOH 1:1) and semi-prep. HPLC (MeOH/ H₂O (containing 0.05% CF₃COOH) 20:80): **12** (17.4 mg; t_R 12.8 min) and **14** (11.0 mg; t_R 14.0 min). Fr. C23 was subjected to CC (silica gel, CHCl3/MeOH 1:1; Sephadex LH-20, MeOH: 13 (16.0 mg). Fr. C24 was subjected to CC (silica gel, CHCl₃/MeOH/HCOOH 40:10:1; Sephadex LH-20, MeOH): 8 (7.0 mg; $R_{\rm f}$ 0.6) and 6 (6.2 mg; $R_{\rm f}$ 0.4), purified by prep. TLC (CHCl₃/MeOH/HCOOH, 40:10:1), and 5 (13.4 mg; R_f 0.6) and 7 (5.3 mg; R_f 0.7), purified by prep. TLC (AcOEt/MeOH 3: 1). Fr. C_{25} was subjected to CC (silica gel, CHCl₃/MeOH 50:1, 20:1, 10:1, and 5:1; Sephadex LH-20, MeOH): 1 (23.0 mg), 4 (28.0 mg), 2 (3.5 mg), and 3 (9.0 mg).

(7S,8R)-4,9-Dihydroxy-3,3',5-trimethoxy-4',7-epoxy-8,5'-neolignan-9'-oic Acid Methyl Ester (=(2S,3R)-2,3-Dihydro-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-7-methoxybenzofuran-5-propanoic Acid Methyl Ester; 1): Colorless amorphous solid. [a] $_D^{26}$ = -4.4 (c = 0.36, MeOH). UV (MeOH): 379 (3.07), 290 (3.52), 209 (4.45). CD (c = 0.03, MeOH): 282 (+0.13), 204 (+1.22). IR: 3441, 1731, 1616, 1519, 1500, 1462, 1213, 1143, 1113, 1033. 1 H- and 1 C-NMR: *Table 1*. FAB-MS (pos.): 419 ([M+H] $^+$). HR-ESI-MS (pos.): 441.1518 ([M+Na] $^+$, C_{22} H $_{26}$ NaO $_8^+$; calc. 441.1525).

rel-(7R,7'E,8S)-4,9-Dihydroxy-3,3',5-trimethoxy-4',7-epoxy-8,5'-neolign-7'-en-9'-oic Acid (= rel-(2E)-3-[(2R,3S)-2,3-Dihydro-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-7-methoxybenzo-furan-5-yl]prop-2-enoic Acid; **2**): Colorless amorphous solid. [a] $_{D}^{25}$ = -48.0 (c = 0.083, MeOH). UV (MeOH): 391 (3.03), 294 (3.63), 207 (4.21). CD (c = 0.05, MeOH): 302 (-0.52), 238 (+0.87), 217 (-1.26), 203 (+2.26). 1 H- and 13 C-NMR: Table 1. ESI-MS (neg.): 401 ([M – H] $^{-}$). HR-ESI-MS (neg.): 401.1236 ([M – H] $^{-}$, C₂₁H₂₁O $_{8}$; calc. 401.1236).

(78,8R)-4,9-Dihydroxy-4',7-epoxy-8',9'-dinor-8,5'-neolignan-7'-oic Acid (=(2S,3R)-2,3-Dihydro-3-(hydroxymethyl)-2-(4-hydroxyphenyl)benzofuran-5-carboxylic Acid; **3**): Colorless amorphous solid. [α] $_D^{26}$ = +96.3 (c = 0.52, MeOH). UV (MeOH): 373 (2.96), 258 (3.82), 204 (4.27). CD (c = 0.04, MeOH): 260 (+7.54), 229 (-6.06), 203 (+6.76). IR: 3397, 1674, 1611, 1600, 1518, 1490, 1250, 1172, 1118, 833, 775. 1 H- and 1 3C-NMR: *Table 1*. FAB-MS (neg.): 285 ([M - H] $^-$). HR-ESI-MS (neg.): 285.0754 ([M - H] $^-$, C_{16} H $_{13}$ O $_7$; calc. 285.0762).

(7S,8R)-3,3',5-Trimethoxy-4',7-epoxy-8,5'-neolignan-4,9,9'-triol (=(2S,3R)-2,3-Dihydro-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-7-methoxybenzofuran-5-propanol; **4**): Colorless amorphous solid. [α] $_{10}^{16}$ = - 3.9 (c = 0.80, MeOH). UV (MeOH): 284 (3.44), 208 (4.39). IR: 3425, 1613, 1518, 1499, 1462, 1214, 1142, 1115. $_{10}^{14}$ H- and $_{10}^{13}$ C-NMR: Table 1. ESI-MS (neg.): 425 ([M + Cl] $_{10}^{-}$). HR-ESI-MS (neg.): 425.1370 ([M + Cl] $_{10}^{-}$, C_{21} H $_{26}$ ClO $_{10}^{-}$; calc. 425.1367).

rel-(7R,8S)-3,3',5-Trimethoxy-4',7-epoxy-8,5'-neolignan-4,9,9'-triol 4- β -D-Glucopyranoside (=4-[(2S,3R)-2,3-Dihydro-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxybenzofuran-2-yl]-2,6-dimethoxyphenyl β -D-Glucopyranoside; **5**): Colorless amorphous solid. [α] $_{10}^{16}$ = -33.0 (c = 0.67, MeOH). UV (MeOH): 281 (3.39), 208 (4.60). CD (c = 0.03, MeCN): 206 (-1.89). IR: 3424, 1599, 1501, 1463, 1422, 1124, 1069. $_{10}^{14}$ Hr- and $_{10}^{15}$ C-NMR: Table 2. ESI-MS (neg.): 587 ([M + Cl] $_{10}^{-1}$). HR-ESI-MS (neg.): 587.1883 ([M + Cl] $_{10}^{-1}$, C₂₇H₃₆ClO $_{12}^{-1}$; calc. 587.1895).

rel-(7R,8S)-3,3',5-Trimethoxy-4',7-epoxy-8,5'-neolignan-4,9,9'-triol 9-β-D-Glucopyranoside (= rel-[(2R,3S)-2,3-Dihydro-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxybenzofuran-3-yl]methyl β-D-Glucopyranoside; **6**): Colorless amorphous solid. [a] $_D^{26}$ = -19.3 (c = 0.20, MeOH). UV (MeOH): 377 (3.00), 291 (3.52), 208 (4.26). CD (c = 0.075, MeOH): 310 (-0.28), 272 (-0.10), 246 (+0.30), 229 (-0.18), 206 (-0.75). IR: 3423, 2930, 1603, 1516, 1501, 1463, 1116, 1075, 1043. 1 H- and 13 C-NMR: *Table* 2. ESI-MS (neg.): 587 ([M + Cl] $^{-}$). HR-ESI-MS (neg.): 587.1881 ([M + Cl] $^{-}$, C_{27} H $_{36}$ ClO $_{12}^{-}$; calc. 587.1895).

3,3',5-Trimethoxy-4',7-epoxy-8,5'-neolign-7-ene-4,9,9'-triol 9- β -D-Glucopyranoside (=[2-(4-Hy-droxy-3,5-dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxybenzofuran-3-yl]methyl β -D-Glucopyranoside; 7): Colorless amorphous solid. [a] $_{\rm D}^{\rm DS}$ = -46.6 (c = 0.27, MeOH). UV (MeOH): 307 (4.04), 219 (4.21), 204 (4.21). IR: 3421, 1614, 1516.6, 1462, 1219, 1110. $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: *Table 2*. FAB-MS (neg.): 549 ([M - H] $^{\rm -}$). HR-ESI-MS (neg.): 549.1956 ([M - H] $^{\rm -}$, $C_{\rm 27}$ H $_{\rm 33}$ O $_{\rm 12}$; calc. 549.1972).

3,3',5,5'-Tetramethoxy-8,4'-oxyneolignan-4,9,9-triol 4-β-D-Glucopyranoside (= 4-{3-Hydroxy-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxy]propyl]-2,6-dimethoxyphenyl β-D-Glucopyranoside; **8**): Colorless amorphous solid. [a] $_{2}^{26}$ = -25.0 (c = 0.35, MeOH). UV (MeOH): 269 (3.56), 207 (4.57). IR: 3419, 1594, 1504, 1462, 1422, 1243, 1226, 1125, 1067. 1 H- and 13 C-NMR: *Table 2*. FAB-MS (neg.): 583 ([M – H] $^{-}$). HR-ESI-MS (neg.): 619.2145 ([M + Cl] $^{-}$, C₂₈H₄₀ClO $^{-}$ ₁₃; calc. 619.2157).

myo-*Inositol 1-Caffeate* (= myo-*Inositol 1-[(2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoate]*; **9**): Colorless amorphous solid. [α] $_{0}^{26}$ = - 6.4 (c = 0.14, MeOH). UV (MeOH): 329 (3.96), 244 (3.78), 234 (3.78), 218 (3.94). IR: 3407, 1688, 1631, 1604, 1523, 1445, 1281, 1182, 1116, 1034. 1 H- and 13 C-NMR: *Table 3*. FAB-MS (neg.): 341 ([M – H] $^{-}$). HR-ESI-MS (neg.): 341.0878 ([M – H] $^{-}$, C_{15} H₁₇O $_{9}$; calc. 341.0872). myo-*Inositol 6-Caffeate* (= myo-*Inositol 6-[(2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoate]*; **10**): Colorless amorphous solid. [α] $_{0}^{27}$ = -7.9 (c = 0.24, MeOH). UV (MeOH): 327 (3.68), 297 (3.61), 206 (3.83).

IR: 3345, 1690, 1633, 1607, 1519, 1460, 1401, 1380, 1260, 1180, 1112, 1040. 1 H- and 13 C-NMR: *Table 3*. ESI-MS (neg.): 341 ($[M-H]^-$). HR-ESI-MS (neg.): 341.0874 ($[M-H]^-$, $C_{15}H_{17}O_9^-$; calc. 341.0872).

myo-Inositol 5-Caffeate (= myo-Inositol 5-[(2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoate]; **11**): Colorless amorphous solid. UV (MeOH): 327 (3.75), 300 (3.66), 216 (3.79). IR: 3372, 1688, 1632, 1598, 1528, 1445, 1116, 1042, 718. 1 H- and 13 C-NMR: *Table 3*. ESI-MS (neg.): 341 ([M-H] $^{-}$). HR-ESI-MS (neg.): 341.0879 ([M-H] $^{-}$, $C_{15}H_{17}O_{9}^{-}$; calc. 341.0872).

Paucine 3'-β-D-Glucopyranoside (= N-(4-Aminobutyl)caffeamide 3'-β-D-Glucopyranoside = (2E)-N-(4-Aminobutyl)-3-[3-(β-D-glucopyranosyloxy)-4-hydroxyphenyl]prop-2-enamide; **12**): Colorless amorphous solid. [a]_D²⁶ = -23.3 (c = 0.35, MeOH). UV (MeOH): 387 (2.18), 373 (2.30), 312 (3.64), 293 (3.61), 230 (3.60), 216 (3.62). IR: 3439, 1639, 1630, 1547, 1511, 1250, 1173, 1033. 1 H-NMR (CD₃OD, 500 MHz): 3.33 (t, J = 7.1, CH₂CH₂CH₂CH₂NCO), 1.66 – 1.73 (m, CH₂CH₂CH₂CH₂NCO), 1.60 – 1.66 (m, CH₂CH₂CH₂NCO), 2.96 (t, J = 6.6, CH₂CH₂CH₂CH₂NCO), 7.46 (t, t = 16.0, t H – C(5')); 7.12 (t = 8.0, t H – C(6')); 7.43 (t = 16.0, t H – C(3')); 3.47 – 3.54 (t + (t = 11.5, t + 4.3 – 3.52 (t + 4.4 (t = 11.5, t + 6.0, t + 6.0, t + 7.7 (t + 7.7 (t + 9.0) t + 11.5, t + 11

Acid Hydrolysis of **5**. Compound **5** (5 mg) was dissolved in 2N HCl (2 ml) and hydrolyzed (4 h) at 90°. The acidic soln. was concentrated, and the residue separated by CC (silica gel, CHCl₃/MeOH/H₂O 40:10:0.5): 0.8 mg of D-glucose, detected by TLC and optical rotation. [α]²² = +28.2 (c = 0.08, H₂O). Biological Testing. The acidic of compounds **7** and **11**, and N^1 -cis-p-coumaroylagmatine (**14**) against

K562 cells were measured by the MTT method with adriamycin as pos. control ($IC_{50} = 0.32 \,\mu\text{M}$) [24], and that of compound **12** and paucine (**13**) against AChE was assessed by *Ellman*'s method with tacrine as pos. control ($IC_{50} = 0.20 \,\mu\text{M}$) [25], resp.

REFERENCES

- [1] D. Z. Chen, J. G. Yu, Zhongcaoyao 1986, 17, 4.
- [2] X. K. Zheng, K. K. Li, Y. Z. Wang, W. S. Feng, Chin. Chem. Lett. 2008, 19, 79.
- [3] T. M. Zhu, K. L. Chen, W. B. Zhou, Chin. Chem. Lett. 2008, 19, 1456.
- [4] C.-M. Sun, M.-J. Syu, Y.-T. Huang, C.-C. Chen, J.-C. Ou, J. Nat. Prod. 1997, 60, 382.
- [5] S. Shi, H. Zhou, Y. Zhang, K. Huang, Chromatographia 2008, 68, 173.
- [6] Y.-H. Wang, C.-L. Long, F.-M. Yang, X. Wang, Q.-Y. Sun, H.-S. Wang, Y.-N. Shi, G.-H. Tang, J. Nat. Prod. 2009, 72, 1151.
- [7] H. Keller, H. Hohlfeld, V. Wray, K. Hahlbrock, D. Scheel, D. Strack, Phytochemistry 1996, 42, 389.
- [8] S.-i. Tebayashi, Y. Horibata, E. Mikagi, T. Kashiwagi, D. B. Mekuria, A. Dekebo, A. Ishihara, C.-S. Kim, Biosci., Biotechnol., Biochem. 2007, 71, 1521.
- [9] S. García-Muñoz, M. Álvarez-Corral, L. Jiménez-González, C. López-Sánchez, A. Rosales, M. Muñoz-Dorado, I. Rodríguez-García, *Tetrahedron* 2006, 62, 12182.
- [10] Y.-W. Chin, H.-B. Chai, W. J. Keller, A. D. Kinghorn, J. Agric. Food. Chem. 2008, 56, 7759.
- [11] L. Jiménez-González, M. Álvarez-Corral, M. Muñoz-Dorado, I. Rodríguez-García, Chem. Commun. 2005, 2689.
- [12] S. Antus, T. Kurtán, L. Juhász, L. Kiss, M. Hollósi, Z. Májer, Chirality 2001, 13, 493.
- [13] T. H. Kim, H. Ito, K. Hayashi, T. Hasegawa, T. Machiguchi, T. Yoshida, Chem. Pharm. Bull. 2005, 53, 641
- [14] H. Achenbach, J. Gross, X. A. Dominguez, G. Cano, J. V. Star, L. D. Brussolo, G. Munoz, F. Salgado, L. López, *Phytochemistry* 1987, 26, 1159.
- [15] D. L. J. Clive, E. J. L. Stoffman, Org. Biomol. Chem. 2008, 6, 1831.

- [16] Y. Natori, H. Tsutsui, N. Sato, S. Nakamura, H. Nambu, M. Shiro, S. Hashimoto, J. Org. Chem. 2009, 74, 4418.
- [17] M. Aoyama, A. Sakakibara, Mokuzai Gakkaishi 1978, 24, 422.
- [18] Y.-L.Yang, F.-R. Chang, Y.-C. Wu, Helv. Chim. Acta 2005, 88, 2731.
- [19] K. Takara, D. Matsui, K. Wada, T. Ichiba, I. Chinen, Y. Nakasone, Biosci., Biotechnol., Biochem. 2003, 67, 376.
- [20] P. Mølgaard, H. Ravn, Phytochemistry 1988, 27, 2411.
- [21] P. Dittrich, T. Danböck, Plant Physiol. 1977, 59, 279.
- [22] Y. C. Shen, C. Y. Chen, M. C. Hung, Chem. Pharm. Bull. 2000, 48, 1344.
- [23] A. Hosoda, E. Nomura, A. Murakami, K. Koshimizu, H. Ohigashi, K. Mizuno, H. Taniguchi, Bioorg. Med. Chem. 2002, 10, 1855.
- [24] T. Mosmann, J. Immunol. Methods 1983, 65, 55.
- [25] G. L. Ellman, K. D. Courtney, V. Andres Jr., R. M. Featherstone, Biochem. Pharmacol. 1961, 7, 88.

Received March 22, 2010